




**UniRoyal**

# DATASHEET

**Product Name** **Ultra High Power Thick Film Chip Resistors**

**Part Name** **SP Series**

**File No.** **SMD-SP-004**

## **Uniroyal Electronics Global Co., Ltd.**

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

**Tel** +86 512 5763 1411 / 22 /33

**Email** [marketing@uni-royal.cn](mailto:marketing@uni-royal.cn)

**Manufacture Plant** Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

## 1. Scope

- 1.1 This datasheet is the characteristics of Ultra High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power rating up to 6 watts
- 1.3 Suitable for both wave & re-flow soldering
- 1.4 Application LED lamps, Intelligent home appliances, Medical equipment, Kinds of industrial control devices & Industrial supplies.
- 1.5 AEC-Q200 qualified
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

## 2. Part No. System

Part No. includes 14 codes shown as below:

- 2.1 1<sup>st</sup>~4<sup>th</sup> codes: Part name. E.g.: SP10、SP12、SP17、SP20、SP27
- 2.2 5<sup>th</sup>~6<sup>th</sup> codes: Power rating.

| E.g.: W=Normal Size |    | “1~G” = “1~16” |    |    |    |  |
|---------------------|----|----------------|----|----|----|--|
| Wattage             | 2  | 3              | 4  | 5  | 6  |  |
| Normal Size         | 2W | 3W             | 4W | 5W | 6W |  |

For power rating of 1W to 16W, the 5<sup>th</sup> digit will be a number or a letter code and the 6<sup>th</sup> digit will be the letters of W, S or U. E.g.: 2W=2W

2.3 7<sup>th</sup> code: Tolerance. E.g.: F=±1% J=±5%

2.4 8<sup>th</sup>~11<sup>th</sup> codes: Resistance Value.

2.4.1 If value belongs to standard value of E-24 series, the 8<sup>th</sup> code is zero, 9<sup>th</sup>~10<sup>th</sup> codes are the significant figures of resistance value, and the 11<sup>th</sup> code is the power of ten.

2.4.2 If value belongs to standard value of E-96 series, the 8<sup>th</sup>~10<sup>th</sup> codes are the significant figures of resistance value, and the 11<sup>th</sup> code is the power of ten.

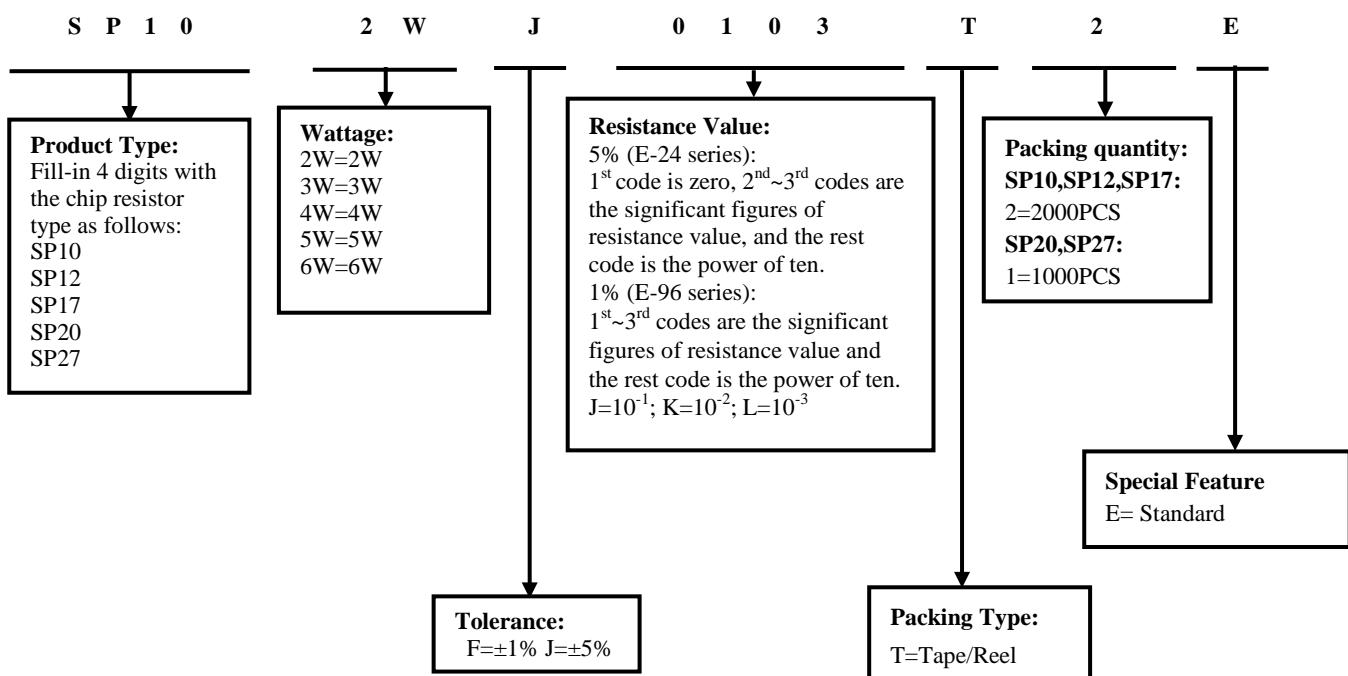
2.4.3 11<sup>th</sup> codes listed as following:

$$0=10^0 \quad 1=10^1 \quad 2=10^2 \quad 3=10^3 \quad 4=10^4 \quad 5=10^5 \quad 6=10^6 \quad J=10^{-1} \quad K=10^{-2} \quad L=10^{-3} \quad M=10^{-4}$$

2.5 12<sup>th</sup>~14<sup>th</sup> codes.

2.5.1 12<sup>th</sup> code: Packaging Type. E.g.: T=Tape/Reel

2.5.2 13<sup>th</sup> code: Standard Packing Quantity.


$$1=1,000\text{pcs} \quad 2=2,000\text{pcs}$$

2.5.3 14<sup>th</sup> code: Special features.

E = Standard

## 3. Ordering Procedure

(Example: SP10 2W ±5% 10KΩ T/R-2000)



#### 4. Marking

4.1  $\pm 5\%$  tolerance products (E-24 series):

3 codes.

1<sup>st</sup>~2<sup>nd</sup> codes are the significant figures of resistance value, and the rest code is the power of ten.



333 → 33KΩ

For ohmic values below 10 Ω, letter "R" is for decimal point.



9R1 → 9.1Ω

4.2  $\pm 1\%$  tolerance products (E-96 series):

4 codes.

1<sup>st</sup>~3<sup>rd</sup> codes are the significant figures of resistance value, and the rest code is the power of ten.

Letter "R" in mark means decimal point.



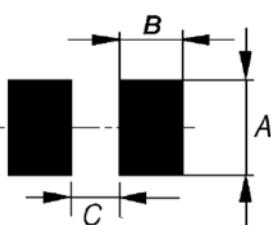
2701 → 2.7KΩ

For ohmic values below 100 Ω, letter "R" is for decimal point.



1R80 → 1.8Ω

#### 5. Dimension


| Type       | Dimension(mm) |           |           |           |           |
|------------|---------------|-----------|-----------|-----------|-----------|
|            | L             | W         | H         | A         | B         |
| SP10(2010) | 5.00±0.10     | 2.50±0.15 | 1.10±0.10 | 0.60±0.25 | 0.50±0.20 |
| SP12(2512) | 6.35±0.10     | 3.20±0.15 | 1.10±0.10 | 0.60±0.25 | 1.80±0.20 |
| SP17(2817) | 7.10±0.20     | 4.20±0.20 | 1.10±0.10 | 0.60±0.20 | 1.80±0.20 |
| SP20(4320) | 11.00±0.30    | 5.00±0.25 | 1.10±0.10 | 0.80±0.20 | 2.40±0.20 |
| SP27(4527) | 11.60±0.30    | 6.85±0.25 | 1.10±0.10 | 1.00±0.20 | 2.50±0.20 |



#### 6. Resistance Range

| Type | Size       | Power Rating | Resistance Range of 1% & 5% | Max. Working Voltage | Max. Overload Voltage | Dielectric withstandin Voltage | Operating Temperature |
|------|------------|--------------|-----------------------------|----------------------|-----------------------|--------------------------------|-----------------------|
| SP10 | 2010(5025) | 2W           | 1Ω~10M                      | 200V                 | 500V                  | 500V                           | -55°C~155°C           |
| SP12 | 2512(6432) | 3W           | 1Ω~10M                      | 250V                 | 500V                  | 500V                           | -55°C~155°C           |
| SP17 | 2817(7142) | 4W           | 1Ω~10M                      | 250V                 | 500V                  | 500V                           | -55°C~155°C           |
| SP20 | 4320(1150) | 5W           | 1Ω~10M                      | 300V                 | 600V                  | 600V                           | -55°C~155°C           |
| SP27 | 4527(1267) | 6W           | 1Ω~10M                      | 300V                 | 600V                  | 600V                           | -55°C~155°C           |

#### 7. Soldering pad size recommended



Unit: mm

| Size | A    | B    | C    |
|------|------|------|------|
| SP10 | 3.00 | 2.00 | 3.90 |
| SP12 | 3.70 | 3.30 | 2.70 |
| SP17 | 4.70 | 3.30 | 3.40 |
| SP20 | 5.50 | 3.90 | 6.10 |
| SP27 | 7.20 | 4.00 | 6.50 |

4 layers PCB specification:

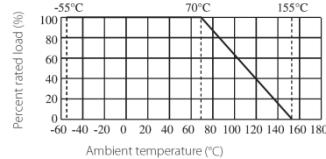
1. Outside 2 layers (Top and Bottom) with copper foil thickness at 2 oz.
2. Inside 2 layers (Middle layers) with copper foil thickness at 4 oz.

## 8. Derating Curve

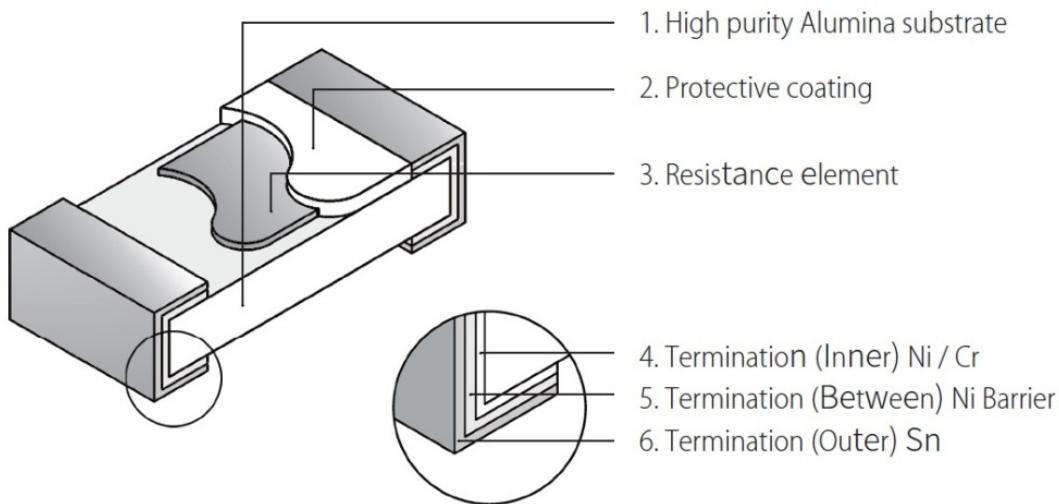
Power rating will change based on continuous load at ambient temperature from -55 to 155°C.

It is constant between -55 to 70°C, and derate to zero when temperature rise from 70 to 155°C.

Voltage rating:


Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$


Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance ( $\Omega$ )

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

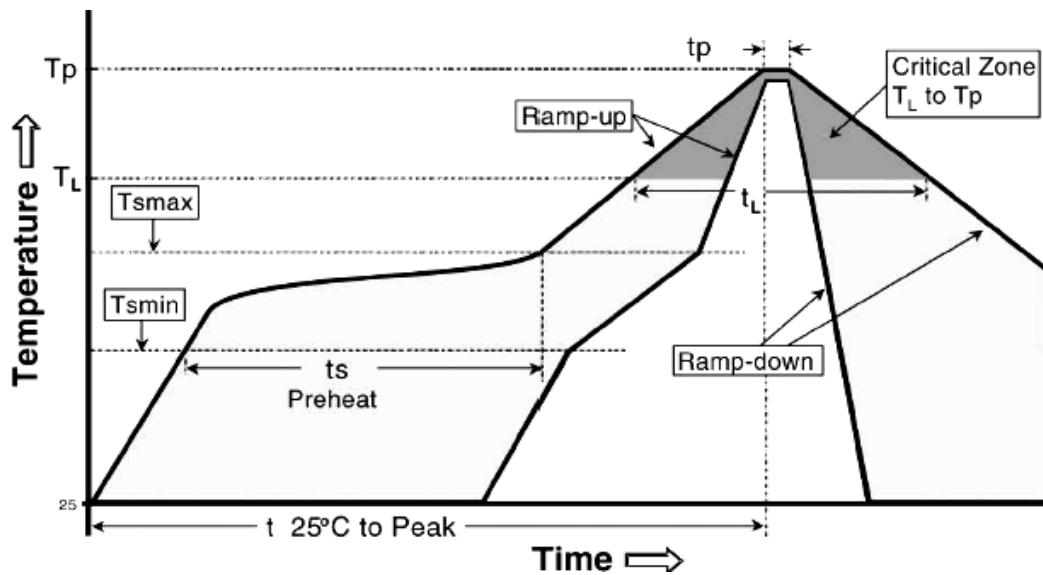
The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.



## 9. Structure



## 10. Performance Specification

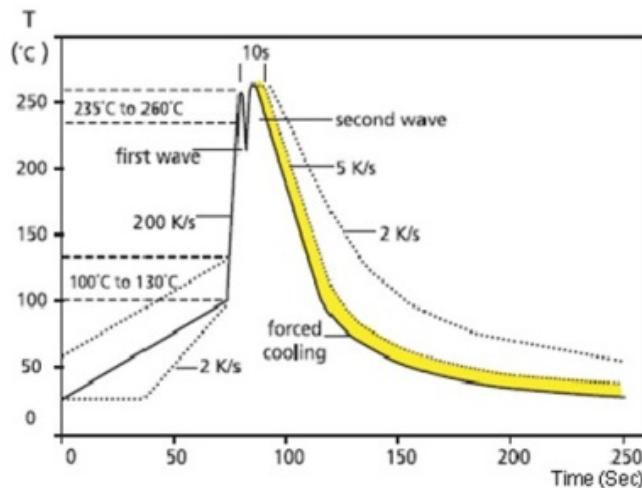

| Characteristic                      | Limits                                                                                                                               | Ref. Standards                                           | Test Method                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational life                    | $\pm 1\%: \pm(1.0\%+0.1\Omega)$<br>$\pm 5\%: \pm(3.0\%+0.1\Omega)$                                                                   | MIL-STD-202                                              | 70°C rated power , at RCWV or Max .Working Voltage whichever less, 1000h (1.5 hours “ON”, 0.5 hour “OFF”). Measurement at 24±4hours after test conclusion.                                                                                                                                                                                              |
| Electrical Characterization (T.C.R) | $1\Omega \sim 10\Omega: \leq \pm 200\text{PPM}/^\circ\text{C}$<br>$10.1\Omega \sim 10M\Omega: \leq \pm 100\text{PPM}/^\circ\text{C}$ | GB/T 5729 4.8<br>JIS-C-5201 4.8<br>IEC 60115-1 6.2       | 4.8 Natural resistance changes per temp. Degree centigrade<br>$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM}/^\circ\text{C})$<br>$R_1$ : Resistance Value at room temperature ( $t_1$ ) ;<br>$R_2$ : Resistance at test temperature ( $t_2$ )<br>$t_1$ : +25°C or specified room temperature<br>$t_2$ : Test temperature ( -55°C or 125°C ) |
| Short-time overload                 | $\pm 1\%: \pm(1.0\%+0.1\Omega)$<br>$\pm 5\%: \pm(2.0\%+0.1\Omega)$                                                                   | GB/T 5729 4.13<br>JIS-C-5201 4.13<br>IEC 60115-1 8.1.4.2 | 4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds..                                                                                                                                                                                                         |
| External Visual                     | Marking Complete , no mechanical damage                                                                                              | MIL-STD-883<br>Method 2009                               | Electrical test not required. Inspect device construction, marking and workmanship                                                                                                                                                                                                                                                                      |
| Physical Dimension                  | Reference 5. Dimension Standards                                                                                                     | JESD22<br>MH Method JB-100                               | Verify physical dimensions to the applicable device detail specification.<br>Note: User(s) and Suppliers spec. Electrical test not required.                                                                                                                                                                                                            |

|                                     |                                                                    |                        |                                                                                                                                                                                                                                               |
|-------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resistance to Solvent               | Marking Complete , no mechanical damage                            | MIL-STD-202 Method 215 | Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents.                                                                                                                                                       |
| Terminal Strength                   | Not broken                                                         | AEC-Q200-006           | Force of 17.7N for 60±1 seconds.                                                                                                                                                                                                              |
| High Temperature Exposure (Storage) | ±(1.0%+0.1Ω)                                                       | MIL-STD-202 Method 108 | Upper Temperature.1000hrs. Unpowered. Measurement at 24±4 hours after test conclusion.                                                                                                                                                        |
| Temperature Cycling                 | ±1%: ±(0.5%+0.1Ω)<br>±5%: ±(1.0%+0.1Ω)                             | JESD22 Method JA-104   | 1000 Cycles (-55 °C to +155 °C). Measurement at 24±4 hours after test conclusion.                                                                                                                                                             |
| Biased Humidity                     | ±1%: ±(1.0%+0.1Ω)<br>±5%: ±(3.0%+0.1Ω)                             | MIL-STD-202 Method 103 | 1000 hours 85 °C,85%RH.<br>Note: Specified conditions: 10% of operating power. Measurement at 24±4 hours after test conclusion.                                                                                                               |
| Mechanical Shock                    | ±(1.0%+0.1Ω)                                                       | MIL-STD-202 Method 213 | Half sine wave, acceleration 100g's, each three times in X, Y and Z directions, pulse width 6ms.                                                                                                                                              |
| Vibration                           | ±(1.0%+0.1Ω)                                                       | MIL-STD-202 Method 204 | 5g's for 20 min., 12cycle each of 3 orientations.<br>Note: Use 8" *5"PCB. 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2' from any secure point. Test from 10-2000Hz. |
| ESD                                 | ±(10%+0.1Ω)                                                        | AEC-Q200-002           | With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of ±500V,±1KV, ±2KV, ±4KV, ±8KV, The electrometer reading shall be within ±10% for voltages from 500V to ≤ 800V.                         |
| Solderability                       | 95% coverage Min.                                                  | J-STD-020E             | For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions:<br>a) Method B 4hrs at 155 °C dry heat, the dip in bath with 245 °C,5s.<br>b) Method D: at 260 °C, 30±0.5s.                                               |
| Flammability                        | No ignition of the tissue paper or scorching or the pinewood board | UL-94                  | V-0 or V-1 are acceptable. Electrical test not required.                                                                                                                                                                                      |
| Board Flex                          | ±(1.0%+0.05Ω)                                                      | JIS-C-6429             | Bending 2mm(min) for 60+5sec                                                                                                                                                                                                                  |
| Flame Retardance                    | No flame                                                           | AEC-Q200-005           | Only requested, when voltage/power will increase the surface temp to 350 °C. Apply voltage from 9V to 32V. No flame; No explosion.                                                                                                            |
| Resistance to Soldering Heat        | ±(1.0%+0.05Ω)                                                      | MIL-STD-202 Method 210 | Condition B No per-heat of samples.<br>Dipping the resistor into a solder bath having a temperature of 260 °C±5 °C and hold it for 10±1 seconds                                                                                               |

## 11. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

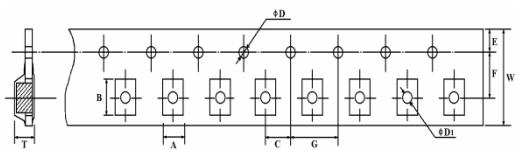
11.1 Recommend Reflow Soldering Profile : (solder : Sn96.5 / Ag3 / Cu0.5)




| Profile Feature                                                                               | Lead (Pb)-Free solder                    |
|-----------------------------------------------------------------------------------------------|------------------------------------------|
| Preheat:                                                                                      |                                          |
| Temperature Min ( $T_{s_{min}}$ )                                                             | $150^{\circ}\text{C}$                    |
| Temperature Max ( $T_{s_{max}}$ )                                                             | $200^{\circ}\text{C}$                    |
| Time ( $T_{s_{min}}$ to $T_{s_{max}}$ ) ( $t_s$ )                                             | 60 -120 seconds                          |
| Average ramp-up rate :<br>( $T_{s_{max}}$ to $T_p$ )                                          | $3^{\circ}\text{C} / \text{second max.}$ |
| Time maintained above :<br>Temperature ( $T_L$ )<br>Time ( $t_L$ )                            | $217^{\circ}\text{C}$<br>60-150 seconds  |
| Peak Temperature ( $T_p$ )                                                                    | $260^{\circ}\text{C}$                    |
| Time within $\frac{+0}{-5}^{\circ}\text{C}$ of actual peak Temperature ( $t_p$ ) <sup>2</sup> | 10 seconds                               |
| Ramp-down Rate                                                                                | $6^{\circ}\text{C}/\text{second max.}$   |
| Time $25^{\circ}\text{C}$ to Peak Temperature                                                 | 8minutes max.                            |

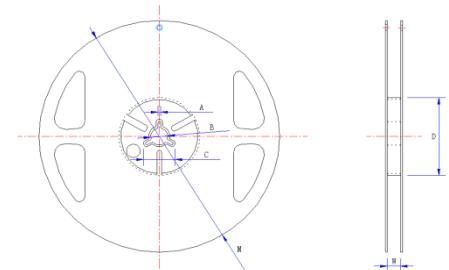
Allowed Re-flow times : 2 times

Remark : To avoid discoloration phenomena of chip on terminal electrodes, we suggest use  $\text{N}_2$  Re-flow furnace .


11.2 Recommend Wave Soldering Profile : (Apply to 0603 and above size)



## 12. Packing


12.1 Dimension of plastic taping: (Unit: mm)

| Type | A $\pm 0.2$ | B $\pm 0.2$ | C $\pm 0.05$ | $\Phi D_0^{+0.1}$ | $\Phi D 1_0^{+0.25}$ | E $\pm 0.1$ | F $\pm 0.05$ | G $\pm 0.1$ | W $\pm 0.2$ | T $\pm 0.1$ |
|------|-------------|-------------|--------------|-------------------|----------------------|-------------|--------------|-------------|-------------|-------------|
| SP10 | 2.90        | 5.6         | 2.0          | 1.5               | 1.5                  | 1.75        | 5.5          | 4.0         | 12          | 1.35        |
| SP12 | 3.50        | 6.7         | 2.0          | 1.5               | 1.5                  | 1.75        | 5.5          | 4.0         | 12          | 1.35        |
| SP17 | 4.50        | 7.4         | 2.0          | 1.5               | -                    | 1.75        | 7.5          | 4.0         | 16          | 1.35        |
| SP20 | 5.40        | 11.5        | 2.0          | 1.5               | -                    | 1.75        | 11.5         | 4.0         | 24          | 1.35        |
| SP27 | 7.20        | 11.9        | 2.0          | 1.5               | -                    | 1.75        | 11.5         | 4.0         | 24          | 1.35        |



12.2 Dimension of Reel : (Unit: mm)

| Type | Taping   | Qty/Reel | A $\pm 0.5$ | B $\pm 0.5$ | C $\pm 0.5$ | $\Phi D \pm 1$ | $\Phi L \pm 2$ | W $\pm 1$ |
|------|----------|----------|-------------|-------------|-------------|----------------|----------------|-----------|
| SP10 | Embossed | 2,000pcs | 2.0         | 13.0        | 21.0        | 60.0           | 178.0          | 13.5      |
| SP12 | Embossed | 2,000pcs | 2.0         | 13.0        | 21.0        | 60.0           | 178.0          | 13.5      |
| SP17 | Embossed | 1,000pcs | 2.0         | 13.0        | 21.0        | 60.0           | 178.0          | 17.5      |
| SP20 | Embossed | 1,000pcs | 2.0         | 13.0        | 21.0        | 60.0           | 178.0          | 25.5      |
| SP27 | Embossed | 1,000pcs | 2.0         | 13.0        | 21.0        | 60.0           | 178.0          | 25.5      |



## 13. Note

13.1. UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%.

(Put condition for individual product).Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old.

(Put condition for each product) may be degraded.

13.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

13.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:

a. Storage in high Electrostatic.

b. Storage in direct sunshine 、 rain and snow or condensation.

c. Where the products are exposed to sea winds or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>, Br, etc.

## 14. Record

| Version | Description                                                                             | Page   | Date          | Amended by  | Checked by  |
|---------|-----------------------------------------------------------------------------------------|--------|---------------|-------------|-------------|
| 1       | First version                                                                           | 1~5    | Feb.12, 2019  | Haiyan Chen | Yuhua Xu    |
| 2       | Modify the High Temperature Exposure conditions                                         | 7      | July.29, 2019 | Haiyan Chen | Yuhua Xu    |
| 3       | Modify the reflow curve and add the wave soldering curve                                | 5      | Apr.29, 2020  | Haiyan Chen | Yuhua Xu    |
| 4       | 1.Add the Soldering pad size recommended<br>2. Modify instructions for reflow soldering | 3<br>5 | Jun.25, 2020  | Haiyan Chen | John Zhao   |
| 5       | Modify the temperature coefficient test conditions                                      | 4      | Oct.26, 2022  | Haiyan Chen | Yuhua Xu    |
| 6       | Modify performance in accordance with AEC-Q200 terms                                    | 4~5    | Apr.09, 2024  | Haiyan Chen | Yuhua Xu    |
| 7       | Modify Performance Specification                                                        | 4~5    | Jan.08, 2026  | Xiaoli Liu  | Haiyan Chen |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice