

Uni-Royal

DATASHEET

Product Name **Fusible Wire-Wound Fixed Resistors**

Part Name **FWR Series**

File No. **DIP-SP-066**

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Fusible Wire-Wound Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 FWR0 According to UL1412 UL approved-No.E306074
- 1.3 Surge Voltage up to 7KV
- 1.4 Fuse function
- 1.5 Surge function base on IEC 61000-4-5
- 1.6 Excellent Flame Retardant
- 1.7 Compliant with RoHS directive.
- 1.8 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 Wire-Wound Fixed Resistors type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: FWR0= Fusible Wire-Wound Fixed Resistors.

- 2.2 5th~6th digits:

- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size

Wattage	1	2	3
Normal Size	1W	2W	3W
Small Size	1S	2S	3S

- 2.2.2 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W or S.

Example: 1W=1W; 3S=3W-S

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

J=±5%

- 2.4 The 8th to 11th digits is to denote the Resistance Value.

- 2.4.1 For the standard resistance values of 5% series, the 8th digit is “0”, the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.;

- 2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

0=10⁰ 1=10¹ 2=10² 3=10³ 4=10⁴ 5=10⁵

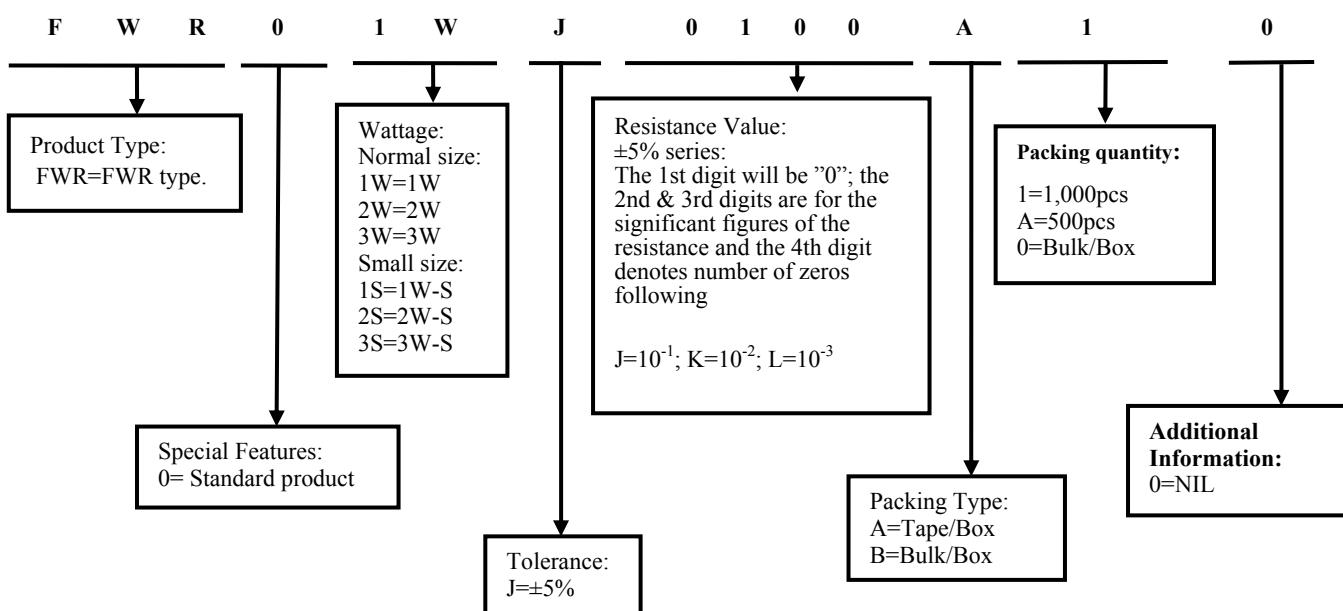
6=10⁶ J=10⁻¹ K=10⁻² L=10⁻³ M=10⁻⁴

- 2.4.3 The 12th, 13th & 14th digits.

- 2.4.1 The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box B=Bulk/Box

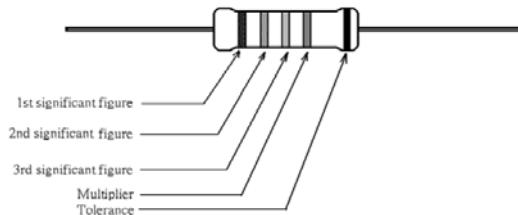
- 2.4.2 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code or number code is to be used for some packing quantities:


A=500pcs 1=1000pcs

- 2.4.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

0=NIL

3. Ordering Procedure


(Example: FWR 1W $\pm 5\%$ 10 Ω T/B-1000)

4. Marking

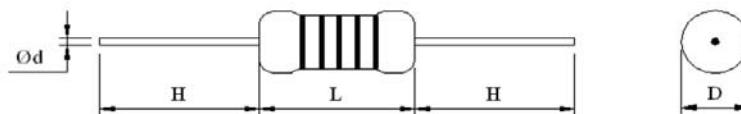
4.1 Resistor :

Resistors shall be marked with color coding
colors shall be in accordance with JIS C 0802

4.3 Label:

Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM


Example:

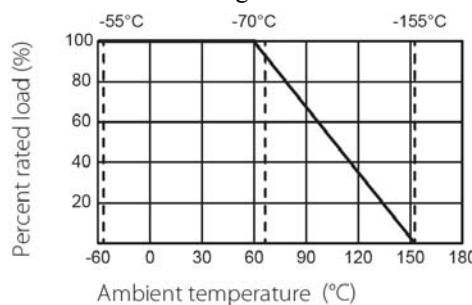
Fusible Wire-Wound Fixed Resistors

WATT : 1W-S	VAL: 10 Ω
Q'TY: 1,000	TOL: 5%
LOT: 7021528	PPM:

5. Ratings & Dimension

5.1 Dimension:

Type	Dimension(mm)				
	D±1	L±1	d±0.05	H±3	PT
FWR 1WS	3.5	9.5	0.54	28	52
FWR 1W,2WS	5.0	12.0	0.70	25	52
FWR 2W,3WS	5.5	16	0.70	28	64
FWR 3W	6.5	17.5	0.75	28	64


5.2 Rating :

Type	Max Working Voltage	Max Overload Voltage	Dielectric Withstanding Voltage	Tolerance	Resistance Range
FWR 1WS	500V	1000V	350V	±5%	0.47Ω~470Ω
FWR 1W,2WS	500V	1000V	500V		
FWR 2W,3WS	500V	1000V	500V		
FWR 3W	500V	1000V	500V		

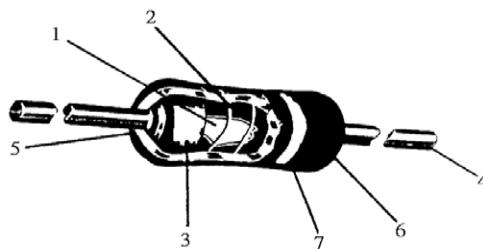
6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the load shall be derate as shown in figure 1

Figure1

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$

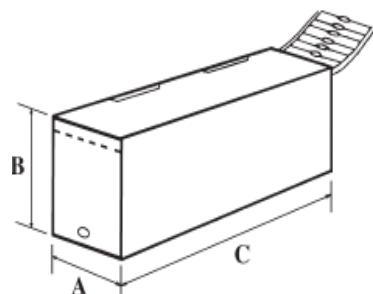
Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Structure

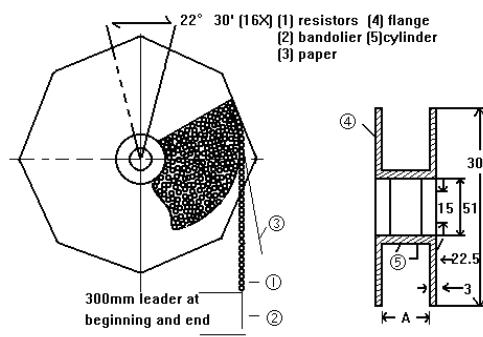
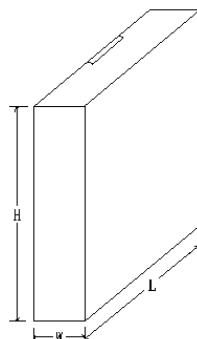
No.	Name	Raw materials
1	Basic body	Rod Type Ceramics
2	Resistance Wire	Alloy
3	End cap	Steel (Tin Plated iron Surface)
4	Lead wire	Annealed copper wire coated with tin
5	Joint	By welding
6	Coating	Normal size & Insulated Non-Flame Paint Color: Green (Normal size) Gray (small size)
7	Marking	Epoxy Resin


8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	< 20Ω : ± 400 PPM/°C Max. ≥ 20Ω : ± 300 PPM/°C Max.	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (PPM/°C)}$ <p>R₁: Resistance Value at room temperature (t₁) ; R₂: Resistance at test temperature (t₂) t₁: +25°C or specified room temperature t₂: Test temperature (+125°C)</p>
Short-Time Overload	Resistance change rate must be in ±(2%+0.05Ω)Max , and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5seconds.
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90° at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Resistance to soldering heat	Resistance change rate must be in ±(1%+0.05Ω) , and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds.
Solderability	95% Coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245°C±3°C Dwell time in solder: 2~3seconds.

Rapid change of temperature	Resistance change rate must be in $\pm(2\%+0.05\Omega)$, and no mechanical damage.	4.19 30 min at -55°C and 30 min at 155°C ; 5 cycles.				
Load life in humidity	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.24.2.1 Resistance change after 1000 hours (1.5 hours "ON", 0.5 hours "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at $40\pm 2^{\circ}\text{C}$ and $93\% \pm 3\%$ RH.				
Load life	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70\pm 2^{\circ}\text{C}$ ambient.				
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min. With ultrasonic				
Fusing test (No guarantee that it will not burst, burn or smoke when the resistor fuse)	Resistance should be opened (The resistance value is over than 50 times from before test value) follow fusing curve condition	<table border="1"> <tr> <th>Fusing</th> <th>Fusing times</th> </tr> <tr> <td>32 times</td> <td>60 Sec</td> </tr> </table>	Fusing	Fusing times	32 times	60 Sec
Fusing	Fusing times					
32 times	60 Sec					

9. Packing



9.1 Tapes in Box Packing:

Dimension of T/B (mm)

Part No.	O	P	A \pm 5	B \pm 5	C \pm 5	Qty/Box
FWR 1WS	52 \pm 1	5 \pm 0.3	85	70	260	1,000pcs
FWR 1W,2WS	52 \pm 1	5 \pm 0.3	86	80	262	1,000pcs
FWR 2W,3WS	64 \pm 1	10 \pm 0.5	92	108	262	1,000pcs
FWR 3W	64 \pm 1	10 \pm 0.5	92	108	256	500pcs

9.2 Tapes in Reel Packing:

Dimension of Reel (mm)

Part No.	A	Qty/Box
FWR 1WS	73 \pm 2	2,500pcs
FWR 1W,2WS	73 \pm 2	2,500pcs
FWR 2W,3WS	81 \pm 5	1,000pcs
FWR 3W	81 \pm 5	500pcs

10. Note

10.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

10.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

10.3. Storage conditions as below are inappropriate:

- a. Stored in high electrostatic environment
- b. Stored in direct sunshine, rain, snow or condensation.
- c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

11. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Jul.22, 2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice